application of differential transforms for solving the volterra integro-partial differential equations

Authors

m. mohseni moghadam1

abstract

in this paper, first the properties of one and two-dimensional differential transforms are presented.next, by using the idea of differential transform, we will present a method to find an approximate solution fora volterra integro-partial differential equations. this method can be easily applied to many linear andnonlinear problems and is capable of reducing computational works. in some particular cases, the exactsolution may be achieved. finally, the convergence and efficiency of this method will be discussed with someexamples which indicate the ability and accuracy of the method.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Application of the block backward differential formula for numerical solution of Volterra integro-differential equations

In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...

full text

Finite difference method for solving partial integro-differential equations

In this paper, we have introduced a new method for solving a class of the partial integro-differential equation with the singular kernel by using the finite difference method. First, we employing an algorithm for solving the problem based on the Crank-Nicholson scheme with given conditions. Furthermore, we discrete the singular integral for solving of the problem. Also, the numerical results ob...

full text

Solving a Class of Partial Differential Equations by Differential Transforms Method

‎In this work, we find the differential transforms of the functions $tan$ and‎ ‎$sec$‎, ‎and then we applied this transform on a class of partial differential equations involving $tan$ and‎ ‎$sec$‎.

full text

Numerical approximation based on the Bernouli polynomials for solving Volterra integro-differential equations of high order

In this ‎article‎‎, ‎an ‎ap‎plied matrix method, which is based on Bernouli Polynomials, has been presented to find approximate solutions of ‎high order ‎Volterra ‎integro-differential‎ equations. Through utilizing this approach, the proposed equations reduce to a system of algebric equations with unknown Bernouli coefficients. A number of numerical ‎illustrations‎ have been ‎solved‎ to ‎assert...

full text

The combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations

In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...

full text

The Legendre Wavelet Method for Solving Singular Integro-differential Equations

In this paper, we present Legendre wavelet method to obtain numerical solution of a singular integro-differential equation. The singularity is assumed to be of the Cauchy type. The numerical results obtained by the present method compare favorably with those obtained by various Galerkin methods earlier in the literature.

full text

My Resources

Save resource for easier access later


Journal title:
iranian journal of science and technology (sciences)

ISSN 1028-6276

volume 34

issue 1 2010

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023